
www.manaraa.com

Contents lists available at ScienceDirect

Information & Management

journal homepage: www.elsevier.com/locate/im

An integrated big data analytics-enabled transformation model: Application
to health care

Yichuan Wanga,⁎, LeeAnn Kungb, William Yu Chung Wangc, Casey G. Cegielskid

a Newcastle University Business School, Newcastle University, United Kingdom
b Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
c Department of Management Systems, University of Waikato, New Zealand
d Auburn University, 405 W Magnolia Ave, Auburn, AL 36849, United States

A R T I C L E I N F O

Keywords:
Big data analytics
IT-enabled transformation
Practice-based view
Business value of IT
Healthcare
Content analysis

A B S T R A C T

A big data analytics-enabled transformation model based on practice-based view is developed, which reveals the
causal relationships among big data analytics capabilities, IT-enabled transformation practices, benefit
dimensions, and business values. This model was then tested in healthcare setting. By analyzing big data
implementation cases, we sought to understand how big data analytics capabilities transform organizational
practices, thereby generating potential benefits. In addition to conceptually defining four big data analytics
capabilities, the model offers a strategic view of big data analytics. Three significant path-to-value chains were
identified for healthcare organizations by applying the model, which provides practical insights for managers.

1. Introduction

The arrival of the “Age of Big Data” presents, to many industries and
the firms that populate them, heretofore unprecedented opportunities and
novel complexities. A number of benefits from adopting big data analytics
into business practices have been recognized by researchers and technol-
ogy consultants (or vendors). Big data analytics is acknowledged to have
the potential to fill the growing need of healthcare managers to manage
the surge in clinical data that support evidence-based medical practice [1]
and improve quality and efficiency of healthcare delivery [2]. Proponents
of the application of big data in the United States claim that when properly
applied, data analytics in the healthcare industry helps cut costs by $300
million annually and helps improve the management of lifestyle-induced
diseases, streamline administrative complexities, and improve interfaces
between customers and providers [3]. However, in fact, exponentially
increasing volumes of data in various formats from different sources
challenge a healthcare organization’s traditional data management cap-
abilities. Much of their rich electronic healthcare record data set is
“perceived as a by-product of healthcare delivery, rather than a central
asset source for competitive advantages” ([2]; p. 1351). To fully realize the
benefits brought forth by big data analytics, a need exists to shift the focus
from technology tools to examine and present the managerial, economic,
and strategic impacts of big data analytics and explore the effective path of
how big data analytics can be leveraged to deliver business value for
healthcare organizations [4,5].

Research on big data analytics has primarily focused the role of big
data analytics capability and examined its direct effect on firm
performance (e.g., [6,7]). However, eminent scholars criticized that
IT resource and capability alone may not unequivocally facilitate firm
performance [8,9]. In the same vein, studies of the IT productivity
paradox have suggested that IT could not directly yield significant
productivity gains in healthcare settings [10]. Practice-based view
(PBV) has been proposed to bridge this missing link and to help
researchers and practitioners in understanding how the critical ele-
ments of practice interact with IT tools [11,12]. In the specific context
of healthcare, scholars have adopted this view to provide in-depth
insights to healthcare practitioners on how IT tools can be used in
improving clinical practices [13,14]. Thus, we argue that adopting PBV
will build a more complete picture of how big data analytics can be
effectively leveraged to deliver business value. However, to date, there
has been little attention given to improving our understanding of the
impact big data analytics on organizational activities and business
processes [12]. We seek to fill this gap by developing a conceptual
model of big data analytics-enabled transformation (BDET) based on
the PBV proposed by Bromiley and Rau [8] and use this as a framework
to examine how big data analytics capabilities facilitate IT-enabled
transformation practices and thus contribute to business value for
healthcare organizations.

Our contribution to the literature on big data analytics is twofold.
First, drawing on the PBV, we develop a BDET model that links big data
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analytics capabilities to IT-enabled transformation practices and then to
benefits and business values. As PBV offers a new perspective to
complement the extant strategic views, this model provides a deeper
understanding of how healthcare practices can be facilitated through
the implementation of big data analytics. Second, BDET model is
applied to the healthcare context. The elements, pair-wise connections,
and path-to-value chains of our BDET model are extracted from the
real-world cases, which show easy-to-follow scenarios and provide new
insights and guidance for healthcare practitioners.

The remainder of this paper is structured as follows: Section 2 serves
as our theoretical background, which leads to the development of the
research model, followed by our research method, findings and
discussions, contributions to research, implications for practice and
recommendations. Finally, limitations and future research directions
are discussed as our conclusion.

2. Theoretical background and research model

The theoretical development begins with an introduction of the
BDET model that used the PBV to explain how big data analytics and its
generated capabilities enable organizations to develop inimitable
practices, which in turn creates their business value. We then present
big data analytics architecture components from which big data
analytics capabilities are generated.

2.1. A model of big data analytics-enabled transformation

We draw on PBV as a theoretical underpinning to develop our
research model. PBV emerging from strategic management aims to
explain the effects of macrolevel firm behaviors or characteristics
within a practice [8]. Adopting a PBV focus not only enables research-
ers to study how the firm implements organizational practices through
the proposed explanatory variables but also helps develop a deeper
understanding of which practices are needed for performance in a given
context [8]. The BDET model constructed for this study is presented in
Fig. 1.

As shown in Fig. 1, the linear progress path of our research model
follows a PBV framework developed by Bromiley and Rau [8]: from the
explanatory variables to practices, then to the intermediate outcomes
(“benefits” in our model), and finally to the organizational performance
(“business value” in our model). Bromiley and Rau’s [8] PBV frame-
work demonstrates how different performances are manifested in firms’
execution of various practices that are facilitated by explanatory
factors. In this framework, the practice, “a defined activity or a set of
activities that a variety of firms might execute” ([8]; p. 1249) is a

central part of the PBV. Practice can be treated as the combination of
the subject, action, tools, and context [15] or as a set of activities,
routines, and material arrangements [16]. The use of practice itself is
important for both intermediate and organization performance out-
comes [17,18]. The explanatory variables can be viewed as antecedents
or enablers of the practice. The explanatory variables are not specified
in the Bromiley and Rau’s [8] PBV model, which allows for idiosyn-
cratic interpretation and applications.

2.1.1. Explanatory variables: big data analytics capabilities
Drawing on the PBV, the first step to construct the BDET model is to

define the explanatory variable, which in this study is big data analytics
capabilities generated from big data analytics resources. Big data
analytics resources, that is, big data analytics architectural components
can create big data analytics-specific capabilities. In previous studies,
Wixom et al. [19] identified two key big data analytics capabilities—-
speed to insight and pervasive use—and their underlying dimension
from big data analytics resources for maximizing business value in the
fashion retail industry. Recently, Gupta and George [7] emphasized
that firms have to develop big data analytics-specific capabilities to
attain organizational performance. Gupta & George’s study has identi-
fied various resources such as data, managerial and technical skills, and
data-driven culture that together build a big data analytics capability,
and this capability creates the operational and strategic business value
(e.g., reduced inventory and cost savings).

Big data analytics comprises an integrated array of aggregation
techniques, analytics techniques, and interpretation techniques that
allow users to transform data into evidence-based decisions and
informed actions [20,21]. We identified three architectural components
of big data analytics from its tools and functionalities, namely data
aggregation, data analysis, and data interpretation, by reviewing the
relevant academic literature (e.g., [4,22]) and technology tutorials
(e.g., [23,24]).

The first architectural component is data aggregation, which aims to
collect heterogeneous data from multiple sources and transforming
various sources data into certain data formats that can be read and
analyzed [22]. In this component, data will be aggregated by three key
functionalities from data aggregation tools: acquisition, transformation,
and storage [4].

The second architectural component, data analysis, aims to process
all kinds of data and perform appropriate analyses for harvesting
insights Wald et al., 2014. This is particularly important for transform-
ing patient data into meaningful information that supports evidence-
based decision-making and meaningful use practices for healthcare
organizations. In simple taxonomy of analytics developed by Delen

Fig. 1. Big data analytics-enabled transformation model.
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[25], there are three main kinds of analytics, namely descriptive,
predictive, and prescriptive analytics, each distinguished by the type
of data and the purpose of the analysis.

The third architectural component is data interpretation. This
component generates outputs such as various visualization reports,
real-time information monitoring, and meaningful business insights
derived from the analytics components to users in the organization.
Three key functionalities are included: (1) general clinical summaries
reporting such as historical reporting, statistical analyses, and time
series comparisons; (2) data visualization, a critical big data analytics
feature is to extrapolate meaning from external data and visualize the
information; and (3) real-time reporting, such as alerts and proactive
notifications, real-time data navigation, and operational key perfor-
mance indicators (KPIs) can be sent to interested users or made
available in the form of dashboards in real time [26].

2.1.2. IT-enabled transformation practices
Next on the model, IT-enabled transformation practices serve a

pivotal role in transforming the big data analytics capabilities into the
intermediate outcomes. IT-enabled transformation practices are defined
as the sequential changes that begin with operational improvement and
internal integration through IT functionalities and then through a set of
business redesign activities to transform IT capabilities into competitive
advantage and financial performance [27,28]. Venkatraman’s [28] IT-
enabled transformation model is used to classify the different level of
transformational practices, which include localized exploitation, inter-
nal integration, business process redesign, business network redesign,
and business scope redefinition. Localized exploitation practice refers to
“a practice to leverage IT functionality to redesign business operations”
([28]; p. 82), while internal integration practice refers to “a practice to
leverage IT capability to create a seamless organizational process –
reflecting both technical interconnectivity and organizational interde-
pendence” ([28]; p. 82). These two formed the evolutionary transfor-
mation-level practices. Business process redesign practice is “redesign-
ing the key processes to derive organizational capabilities for compet-
ing in the future as opposed to simply rectifying current weaknesses”
([28]; p. 82). The business network redesign practice is defined as
“articulating the strategic logic to leverage related participants in the
business network to provide products and services in the marketplace”
([28]; p. 82), while business scope redefinition practice refers to “a
practice that allows organization to redefine the corporate scope that is

enabled and facilitated by IT functionality” ([28]; p. 82). These three
practices formed the revolutionary transformation level.

2.1.3. Outcomes
A multidimensional IS benefit framework developed by Shang and

Seddon [29] is employed to conceptualize the intermediate outcomes of
our model. Shang and Seddon’s framework [29] was built on a large
body of previous research and presents five benefit dimensions, which
are IT infrastructure benefits, operational benefits, organizational
benefits, managerial benefits, and strategic benefits, and aggregates
21 subdimensions, as shown in Table 1. Justification of applying Shang
and Seddon’s benefit dimensions as the outcome of our model is
threefold. First, Shang and Seddon’s framework helps us classify the
benefit categories, which, in turn, enhances our understanding of
business value. Second, their benefit framework has been refined by
many studies related to ERP systems and specific IS architectures
[30,105,106]. It was designed for managers to assess the benefits of
their companies’ enterprise systems, which could be applied as a
general model. Finally, Shang and Seddon [29] provided a clear
guideline for assessing and classifying benefits from IT architecture.

2.2. Big data analytics-enabled transformation

A large body of research has converged on the notion that big data
analytics is a powerful tool to enable business transformation within
organizations. A review of the existing big data literature reveals three
consistent findings about BDET: (a) big data analytics and its generated
capabilities are fundamental in organizational transformation and
performance; (b) BDET occurs when organizations improve their
organizational practices enabled by big data analytics technologies;
and (c) the potential benefits of BDET should be conceptualized by a
multidimensional and comprehensive benefit framework.

First, IT resources consist of IT infrastructure, human IT resources,
and IT-enabled intangibles that the firm can use to improve business
processes [31], whereas IT capabilities can be triggered by the
integration of IS/IT resources, which ultimately impact competitive
advantage [32]. IT capability literature further asserts that IT resources
determine a firm’s IT capabilities, and the positive impact of IT
resources on IT capabilities has been empirically validated [33]. Several
big data studies argue that a firm’s unique big data analytics capability
can be constructed by the configurations of available big data analytics

Table 1
IS benefit framework.
(adopted from Ref. [29]).

Benefit dimension Description Subdimensions

IT infrastructure benefits Sharable and reusable IT resources that provide a foundation for present and future business
applications

• Building business flexibility for current and
future changes

• IT cost reduction

• Increased IT infrastructure capability
Operational benefits The benefits obtained from the improvement of operational activities • Cost reduction

• Cycle time reduction

• Productivity improvement

• Quality improvement

• Customer service improvement
Managerial benefits The benefits obtained from business management activities that involve allocation and control of

the firms’ resources, monitoring of operations, and supporting of business strategic decisions
• Better resource management

• Improved decision-making and planning

• Performance improvement
Strategic benefits The benefits obtained from strategic activities, which involve long-range planning regarding high-

level decisions
• Support for business growth

• Support for business alliance

• Building for business innovations

• Building cost leadership

• Generating product differentiation

• Building external linkages
Organizational benefits The benefits arise when the use of an enterprise system benefits an organization in terms of focus,

cohesion, learning, and execution of its chosen strategies
• Changing work patterns

• Facilitating organizational learning

• Empowerment

• Building common vision
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technological resources [19,34] or the synergetic combination of
valuable, rare, imperfectly imitable, and nonsubstitutable organiza-
tional resources [35], and this capability results in superior organiza-
tional performance [7,36].

Second, effective transformations within organizations can be
achieved through IT-enabled transformation practices [11,37]. The
idea of identifying practices that are facilitated by IT has come to the
fore in Venkatraman’s [28] IT-enabled transformation model. Venkatra-
man’s model is one of the first to identify a set of organizational change
practices executed through IT/IS supports. This model consists of two
levels, evolutionary and revolutionary, which are formed by two (i.e.,
localized exploitation and internal integration) and three (i.e., business
process redesign, business network redesign, and business scope
redefinition) practices, respectively. Later, Markus [37] proposed
techno-change management practices (e.g., changes in business process
and workflow, new job designs, new skills training, restructuring
business units, changing HR policies, reallocated resources, and new
incentives) to ensure adequate resources to assist in accomplishing
organizational change with IT. These studies emphasized that the
outcomes in successful transforming organizations are realized through
their IT-enabled transformation practices, rather than from their
investment in IT alone.

Inspired by the above studies, the idea of identifying practices that
are facilitated by big data analytics systems has come to the fore in big
data research. A case study in an airline company by Watson et al. [38]
found that a set of practices induced by real-time data warehousing and
business intelligence, such as developing co-existence of strategic and
tactical decision support and changing downstream decision-making
and business processes, can dramatically improve their profitability.
Recently, Shollo and Galliers [12] identified that the problem articula-
tion and data selection practices (e.g., articulating new distinctions and
different perspectives) triggered by big data analytics systems enable
organizations to transform new insights into organizational knowledge
that can be used in making decisions and taking actions. In this line of
thought, we believe that to transform organizations by big data
analytics, organizations must implement appropriate transformational
practices to create superior business value.

Third, the outcomes of IT-enabled transformation are not just a
matter of increased productivity or efficiency. They are more related
with new ways of doing business and achieving organizational-level
performance that may include not only tangible business value such as
cost savings but also intangible values such as increased flexibility and
quality improvement [9]. The difficulty in assessing the outcomes of IT-
enabled transformation arises from the two facts that value from
implementing new IT needs a period of time to be fully realized [9].
Previous studies have provided the simple frameworks to evaluate IT
business value [9]. However, big data analytics can result in various
benefits for users. For example, IT infrastructure, operational, and
managerial benefits have been reported in some of the existing business
analytics studies (e.g., [34,36]), and strategic benefits such as speed to
market, improved business understanding, and reputation have been
mentioned in Wixom et al.’s [19] study. Therefore, a comprehensive
framework for recognizing the potential benefits of using big data
analytics should be developed.

3. Research method

3.1. Research design and approach

The epistemological foundation of this study is grounded upon the
interpretivist paradigm. The multiple case study method is particularly
applicable for interpretivist research in IS where “an understanding of
the context of the information system, and the process whereby the
information system influences and is influenced by the context” is
preferred ([107], p. 4–5). Another reason for the recognition of multiple
case studies as a research approach is the nature of the research

question that is being investigated. Practice-based research assumes
that practices are observed, perhaps transformed and mostly studied
with qualitative research methods [11,39]. In the same vein, Kohli and
Grover [40] suggested that a better way to increase a broader under-
standing of companies’ new IT investments payoff is to learn from their
success stories and observe their practices. These stories are useful
sources for the preliminary stage of a research issue [41] and for
creating theoretical constructs and propositions [42]. As this study aims
at producing an understanding of how big data analytics influences the
bundling of IT-enabled transformation practices and generates potential
benefits from the enterprise perspective, it is appropriate to choose the
multiple case study approach.

Our approach is to analyze big data analytics implementation
projects based on case materials that delineate the effects big data
analytics had on business value in healthcare organizations. We
specifically studied the statements used to illustrate how big data
analytics capabilities, triggered by its functionalities, lead to improve-
ments in IT-enabled transformation practices, thereby increasing po-
tential benefits for healthcare organizations. By gradually decomposing
these statements from case materials, the elements that altogether
shape a cause-and-effect structure can be explored [30]. Numerous IT
business value studies have employed analysis of case descriptions to
elaborate business values from the adoption of a specific information
system (e.g., [30,43]). For example, Mueller et al. [30] proposed a
service-oriented architecture economic potential model (SOA-EPM) by
identifying a set of capabilities (e.g., reusability, interoperability, and
flexibility) derived from SOA design principles from SOA implementa-
tion projects. By coding the statements evident in the case material, we
analyzed and structured these statements using our proposed model
that builds on the logic depicted in Fig. 1. We treated these statements
in the text of the case materials as evidence of support for the patterns
in our model. Such patterns could be groups of elements present in a
high number of word frequency, connections between a set of these
elements, or these elements as a complete path-to-value chain linking
big data analytics and business value. These patterns identified across
multiple cases may help us gain an understanding of big data analytics’
business value in healthcare.

3.2. Data collection

Several studies have relied on case materials to explore the value of
emerging technologies (e.g., [30]). However, one common limitation of
these studies is that the materials chosen for creating their model are
provided from IT vendors and companies and thus may be potentially
biased. Usually companies only report their “success” stories and
vendors showcase their “success” projects to promote their products.
Using such cases will certainly lead to the findings of claimed benefits.
To use as little biased materials as possible, we selected cases only from
academic databases, which may provide more rigorous and objective
statements.

Our cases were drawn from case material of current and past big
data projects from academic databases (i.e., ABI/INFORM Complete,
Google Scholar, Web of Science, and IEEE Xplore Digital Library). The
following case selection criteria were applied: (1) the case presents a
real-world implementation of big data analytics in healthcare and (2) it
clearly describes the big data analytics techniques they introduce, how
the techniques affect their clinical practices, and benefits obtaining
from big data analytics. We collected 36 case descriptions and checked
against our criteria. Three case descriptions were eliminated because
they were technical case studies, which only describe the novel
analytics technologies being developed. The final data set consists of
33 case descriptions covering 28 healthcare units or systems (Appendix
A) that adopted big data analytics.

Of these cases, 86% are from North America (22 cases from the
United States; 2 from Canada) and 14% are from other regions (1 case
each: Australia, China, India, and the Netherlands). Forty-three percent
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(12 cases) are “networks/systems,” which means there is a group of
hospitals or clinics or research centers for one case. Thirty-two percent
(9 cases) are single hospitals, 14% (4 cases) government agencies, 7%
(2 cases) insurance companies, and 1% healthcare IT service company.
It is worth noting that all the nine hospitals are research/teaching
oriented, all are top ranked, and all are considered “leaders” in their
fields. This might play an important role as “early adopters” of big data
analytics in healthcare. The similarity among all the 28 cases is that
they all have affluent funding and revenue.

3.3. Research process and data analysis

We generally followed the three-step coding process: preparation,
organizing, and reporting provided by Elo and Kyngäs [44] to extract
insights from the cases to build our BDET model.

3.3.1. Preparing for coding process and building an initial model
The first task in this step was to make sense of the coding process in

terms of coding unit of analysis, the level of analysis, and the purpose of
evaluation [44]. After meeting five times to discuss coding process and
model elements, we selected “themes” (informative and persuasive
nature of case material) as the coding unit of analysis, which primarily
is looking for the expression of an idea that can be sentences,
paragraphs, or a portion of a page [45]. The level of analysis in this
study is the healthcare organization or system that engages in big data
analytics implementation. The purpose of this coding process was to
build a BDET model for healthcare industry by identifying the critical
elements driving business value from big data analytics.

After setting up the coding process, we started to define initial
coding for elements in each layer in our model. As aforementioned, the
elements for big data analytics resource layer and potential benefit
layer are adopted from a set of big data analytics architectural
components and Shang and Seddon’s [29] IS benefit framework,
respectively. Our task at this step is to define the elements of the
connecting layers, that is, big data analytics capability and IT-enabled
transformation practice. We conducted a literature review on big data
analytics and healthcare informatics and followed a concept-centric
approach suggested by Webster and Watson [46] to develop our initial
list of element coding. From this review, we fully understand the tools
and functionalities provided by big data analytics systems and the
nature of big data analytics architectural components. Following the
logic of information lifecycle management [47] and simple taxonomy of
analytics [25], big data analytics capabilities are generated from its
architectural components. Delen [25] further argued that basic analy-
tical capability can be driven by descriptive analytics, while predictive
capability can be triggered by predictive and prescriptive analytics.
Then we performed a pretest by coding a small portion of case materials
and compared/matched to the list to validate and refine the coding
elements [48]. After revising several times, four big data analytics
capability- and six healthcare-related practices for the big data cap-
ability layer and IT-enabled transformation practice layer, respectively,
are determined.

3.3.2. Coding process
We developed an explicit coding instruction that allows coders to be

trained until reaching certain reliability requirements. As suggested by
Krippendorff [48], our coding instruction contains the definitions of the
layers and elements of the BDET model (See Table 1 and Appendix B) to
ensure coders’ understanding of each element [49]. We also provided
an outline, examples of the coding procedures, and a guideline for using
and administering the data sheets for all the coders [48]. Some
confusions of classification have been addressed by providing the
detailed descriptions and examples. For example, for separating the
analytical and predictive capabilities, we introduced Delen’s [25]
taxonomy of analytics to our coders and provided a list of tools and
functionalities for generating these two capabilities and the examples

obtained from our coding pretest. For helping the coders understand the
meaningful use of EHR practice, we introduced a summary overview of
meaningful use objectives and measures provided by Blumenthal and
Tavenner [50].

To increase the quality of coding process, we recruited two senior
consultants in a multinational technology and consulting corporation
headquartered in the United States as our expert outside coder panel.
Both of them have more than15 years of IS-related work experience and
are currently consulting several manufacturing companies and hospitals
in the southeast United States in big data analytics adoption. Using
outside coders in the coding process can minimize potential bias of
subjective perspectives from the researcher and avoid “self-fulfilling
prophecy” issues [44]. In addition, this expert panel can provide rich
background knowledge and industrial experience in classifying these
statements into the subelements of big data analytics capabilities with
similar meaning. An Excel table with analysis unit and all the elements
listed was given to outside coders to manage the statements extracted
from case materials.

One expert panel consultant initiated the selection of statements
(the analysis unit) from all 33 case descriptions that illustrate the path-
to-value chain. A statement was selected if it describes how big data
analytics contributes to business value. Specifically, the statements had
to fully explain: (1) how specific big data analytics tools create big data
analytics capabilities; (2) how these big data analytics capabilities help
clinical practices; and (3) how these practices can lead to potential
benefits in a specific case. This selection of statements served as the
base for further analysis. The selection is then given to the other expert;
both experts then followed the coding procedure starting with open
coding, followed by axial coding, and finally selective coding [49] to
analyze each statement independently.

In the open coding process, the coders broke down, examined, and
categorized the statements into one of the four layers in our model. The
coders also used different color highlights to distinguish each concept
and attached the initial labels relating to the layers (i.e., big data
analytics resources, big data analytics capabilities, practices, and
benefits) and elements (i.e., data aggregation and analytical capability).
As the core layers and elements emerged, the coders initiated axial
coding to explore the various subelements and identify the connections
between them to develop more precise explanations of what big data
analytics resources, capabilities, practices, and benefits are; what cause
them; and the benefits that arise because of them. These subelements
were abstracted from the statements to describe the content of the
elements [51] and move beyond description to a higher level of
abstraction [52]. As second example shown in Appendix C, a passage
captured from Spruit et al. [53] states that big data analytics allowed
Dutch long-term care institution to group all medical incidents by using
a SQL query and report the number and root cause of incidents at a
certain time of day. This passage was labeled as “big data analytics
capability” and “analytical capability” during the open coding, and
subsequently, the subelement “explore the causes of occurred medical
events from relational databases” was created to describe the analytical
capability during the axial coding. In the final step of coding, selective
coding focused on finalizing the codes (or developing new elements in
some cases) by comparing and contrasting other similarly coded
elements and the relationships and patterns that emerged during axial
coding. As a result of coding process, the path-to-value chains emerged
and became evident. Appendix C presents two examples of statements
and the open, axial, and selective codes that were applied to them.

Agreement between two coders in expert panel established the
elements, subelements, connections, and path-to-value chains. When
there were discrepancies, they reassessed and discussed that particular
scenario to see whether an agreement could be achieved. Because some
coding words could not be assigned to the initial elements, one new
element (i.e., network knowledge creation practice) was subsequently
developed. In this coding process, these two coders agreed on 77% of
the categorization resulted in a total of 109 path-to-value chains.
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An audit process was performed to improve the accuracy of
classification [54,55]. In the audit process, two of the authors read
the statements provided by the expert panel and coded them through
the same coding process. The results from the author panel were
compared to those from the expert panel. Assessment and discussion
were performed by all the authors. The subelements were revised,
refined, and merged to reach a more abstract level of conceptualization.
A chain was accepted and counted toward the final tally if it was listed
on both author and expert panel lists. Overall, the two coding teams
agreed on 84% of the classifications. Ensuring interrater reliability led
to the elimination of four chains after much discussion and debate [56].
The final data set comprises 105 path-to-value chains.

Finally, a content analytic technique, frequency analysis, was used
to evaluate the importance associated with an element, connection, and
chain on the basis of the repeated appearance of statements [57]. We
present our results of frequency analysis and discuss them in Section 4.

4. Results and discussions

Building on the theoretical foundations and conceptualization
summarized in Fig. 1, this section presents our BDET model gained
from the analysis of 33 case descriptions and 105 path-to-value chains.
In Section 4.1, we discuss our results according to three distinct
perspectives and break down each element presented in the BDET
model by showing the total number of occurrences (i.e., big data
analytics architectural layers, big data analytics capabilities, and IT-
enabled transformation practices and benefits). In Section 4.2, we

discuss the pair-wise connections between the elements in the BDET
model. In Section 4.3, we discuss the path-to-value chains connecting
all the elements describing big data analytics’ business value.

4.1. Elements

4.1.1. Elements of big data analytics architectural component
In the big data analytics architecture, we find that big data analytics

capabilities are mainly obtained from data analysis component (61
occurrences). This is followed by data interpretation component (28
occurrences) and data aggregation component (16 occurrences). As we
expected, the data analysis component acts as the center of big data
analytics architecture and enables healthcare organizations to explore
new insights and optimal solutions based on complex clinical para-
meters. We break down three big data analytics architectural compo-
nents as shown in Table 2, which displays the number of occurrences in
the case materials for each component. Numerous cases highlight
descriptive analysis, OLAP, and data mining as useful tools in big data
analytics systems for analyzing structured data from multiple perspec-
tives (e.g., EHRs and activity-based historical data) (e.g., [53,58,59]).

Furthermore, our results also show that data interpretation is one of
the critical big data analytics features, which permits clinical data to be
visualized in a useful way to support physicians’ and nurses’ daily
operations and help healthcare managers to make faster, better
decisions [60–62]. An example is the Department of Health Western
Australia that has been collaborating with the Western Australia Drug
and Alcohol Office to map and visualize the rates of drug-related
hospitalizations, mortality, ambulance callouts, police reported drug-
related offences, and treatment episodes recorded by drug and alcohol
services in the Perth metropolitan area in the HealthTracks system; this
assists their governments to identify at-risk populations and areas and
evaluate the association between socioeconomic status and drug-related
health outcomes for future service needs [61].

4.1.2. Elements of big data analytics capability
The importance of the four types of big data analytics capability is

ranked (by frequency count) from our coding (see Table 3). The most
important big data analytics capability for healthcare organizations is
analytical capability (coded as part of 49 occurrences), followed by
decision support capability (26), traceability (16), and predictive
capability (14). We find that the ability to process large amounts of
clinical data to understand the past and current states of specific target
variables (23) is mentioned most often in the analytical capability
element. Big data analytics differs from traditional clinical decision
support systems because of its unique ability to parallelly process large
data volumes and parse and visualize data in real time or near real time
[24]. One case from our collection, a private health insurer in Australia,

Table 2
Breaking down big data analytics resource in healthcare.

The elements of big data
analytics resource

Subelements Number of
occurrences

Data aggregation Data warehouse (SQL
database, NoSQL database,
and cloud-based database)

6 16

Hadoop distributed file
system

6

Extract-transform-load (ETL) 4
Data analysis Descriptive analysis 18 61

Online analytic processing
(OLAP)

15

Data mining 13
Text mining/Natural

language processing (NLP)
9

Predictive modeling 6
Data interpretation Visual dashboards/systems 18 28

Reporting systems/interfaces 10
Total 105

Table 3
Breaking down four big data analytics capabilities in healthcare.

Elements of big data analytics
capabilities

Subelements Number of occurrences

Traceability Integrate seamlessly clinical data across multiple regions or facilities in near real time or real time 8 16
Track medical events based on the rules that built on hospital claims 5

Search clinical databases for all data related to patient characteristics and conditions 3
Analytical capability Analyze large amounts of clinical data to understand the past and current state for specific target variables 23 49

Explore the causes of occurred medical events from relational databases 14
Support real-time processing of multiple clinical data streams 12

Decision support capability Generate clinical summary (or performance metrics) in real time or near real time and presented in visual
dashboards/systems

17 26

Provide system outputs for role-based decision-making 9
Predictive capability Examine undetected correlations, patterns, trends between specific variables of interest across regions or

facilities
9 14

Compare of cross-referencing current and historical data and its outcomes to predict future trends 3
Provide actionable insights or recommendations in a format readily understood by its users 2

Total 105
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utilizes comparative analysis to compare current and historical cost and
profit data related to healthcare insurance services controlling for claim
anomalies, which in turn enabled them in making optimal quotes [63].
Our results also show that the ability to explore the causes of occurred
medical events from relational databases (14) is one of the important
analytical capabilities for healthcare industries. For example, Newark
Beth Israel Medical Center (NBIMC) discovered some radiology exam
activities as potential causes of longer patient stay by analyzing 43,000
patient cases aggregated from various data sources [59]. This analytical
capability enables NBIMC to improve process efficiency and control
costs by identifying the causes of delay in the exam process such as
unnecessary extra diagnostic tests and treatments that were previously
difficult or impossible to discover.

Decision support capability generates clinical summary in real time
or near real time and presents it using visual dashboards/systems (17
occurrences) and yields sharable information and knowledge such as
historical reports, executive summaries, drill-down queries, statistical
analyses, and time series comparisons to different decision-makers (9
occurrences). Some information are deployed in real time (e.g., medical
device dashboard metrics), while others (e.g., daily reports) are
presented in summary forms. Reports generated by big data analytics
engines are distinct from transitional IT architectures as they facilitate
the assessment of past and current operational environments across all
organizational levels. Visualization reports are normally generated after
near-real-time data processing and displayed on healthcare perfor-
mance dashboards, which assist healthcare analysts to recognize
emerging healthcare issues such as medical errors, potential patient
safety issues, and appropriate medication use.

Traceability allows healthcare organizations to track patient data
from all their system’s IT components and medical devices. Traditional
methods for harnessing these data are insufficient because of the
volumes, which could result in unnecessary redundancy in data
transformation and movement and a high rate of inconsistency. Our
cases show that big data traceability provides authorized users access to
large national or local data pools and integrates data simultaneously
from various sources [1,64]. This not only reduces conflicts between
different healthcare sectors but also decreases the difficulties in linking

the data to healthcare workflow for process optimization.
However, despite its importance for healthcare quality improve-

ment, predictive capability only manifested in 14 occurrences. In some
(e.g., [63]) but not all cases, organizations have the ability to discover
undetected correlations, patterns, and trends between specific variables
of interest across regions or facilities. Numerous prior studies indicate
that the application of predictive and prescriptive analytics to health-
care fields is still in its earliest stages [53,65]. One of our cases
demonstrated the difficulty in developing a reliable predictive model
without the ability to exploit large quantity of valuable dataset [53].
Amarasingham et al. [65] indicated that the difficulty to customize
legacy healthcare information systems for predictive models would
limit the quality of predictions. They further suggested that predictive
models may not respond to changes in EHRs, and therefore, require IT
personnel to manually refine the predictive rules, which lowers the
efficiency and productivity of predictions.

4.1.3. Elements of IT-enabled transformation practice
Our results reveal that big data analytics capabilities mainly support

evidence-based medicine (46), followed by meaningful use of EHR (19),
network knowledge creation (12), clinical resource integration (10),
multidisciplinary practice (7), network collaborations (6), and perso-
nalized care (5). We break down seven IT-enabled transformation
practices that are triggered by big data analytics, as shown in
Table 4. The majority of statements mention that healthcare systems
with the aid of big data analytics can identify practice-based clinical
data (e.g., patient demographics, medical history, and treatments)
effectively from day-to-day operations and services in clinical settings
(16) and abstract insights from systematic literature and research
studies (e.g., randomized-controlled trials, clinical guidelines, quasi-
experimental studies, and external expert opinions) to build a holistic
view of evidence (11). These data could be the basis of evidence-based
medicine for decision-makers as they are transformed into the useful
evidence through an evidence quality evaluation (10). For example,
MedStar Health, a 10-hospital system serving the mid-Atlantic region in
the United States reports that using patient safety event reporting
systems (PSRS) resulted in their elimination of many medical errors and

Table 4
Breaking down seven IT-enabled transformation practices in healthcare.

Elements of IT-enabled Transformation
Practices

Subelements Number of occurrences

Meaningful use of EHR Useful clinical quality reporting can be generated by EHR systems 8 19
Generate lists of patients by specific conditions to use for quality improvement, reduction of

disparities, research, or outreach
5

Maintain up-to-date problem list of current and active diagnoses 4
Improve care coordination among healthcare units through an interoperable EHR system 2

Evidence-based medicine Identify practice-based evidence from day-to-day clinical operations and services for decision-
makers

16 46

Build holistic view of evidence by abstracting insights from literature-based data such as
systematic literature sources and research studies

11

Overall practice- and literature-based data are graded to reflect the quality of the supporting
evidence

10

Explore the fact from medical events (or patient treatments) to improve a specific outcome 6
Patient cases can exchange among providers and patient-authorized entities 3

Multidisciplinary Allow physicians to use quality metrics and care dashboards that aggregate information from
multidisciplinary teams

4 7

Provide joint decisions regarding treatments to patients from a multidisciplinary team 3
Clinical resource integration Allocate resources to serve each healthcare unit 8 10

Create centralized information support for clinical operation 2
Network collaboration Resolve conflicts on data sources between care providers and other stakeholders 3 6

Build common understanding of healthcare service between care providers and other
stakeholders

3

Network knowledge creation Allow all stakeholders to share information on the platforms 7 12
Discover new knowledge by enabling stakeholders to collaboratively map ideas from

interoperable analytic platforms
5

Personalized care Create a personalized disease risk profile and disease and wellness management plan for each
patent

5 5

Total 105
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produced the guideline for patient safety. Applying visual analytics
techniques in PSRS, MedStar aggregates patient safety events across the
hospitals and the data from semi-structured interviews to improve
awareness of event types and shares event patterns and trends as
evidence with department leadership to address potential safety
hazards [62].

Meaningful use of EHR is reported as the second highest occurrence
of BDET practice. For example, Garrido et al. [58] showed that
HealthConnect—a big data analytics based EHR system developed for
Kaiser Permanente—provides automated reporting of 21 quality mea-
sures, resulting in system-wide healthcare improvements for their
patients. One of the reasons that made this automation possible is that
their EHR is supported by data mining techniques so data can be
captured across conditions, mapped, standardized, and validated
effectively.

Overall, our results suggest that a transformation in healthcare
through big data analytics is still in the early stages of evolutionary
transformation as 65 of 105 chains were coded into the category of
localized exploitation practices (i.e., meaningful use of EHR and
evidence-based medicine). Thus, the managerial and strategic benefits
are as yet somewhat limited.

4.1.4. Elements of benefit dimension
For the third layer of the BDETmodel, the benefit dimension, our results

indicate that the primary utility of IT-enabled practices for healthcare
organizations is to enhance their IT infrastructure (44 occurrences),
followed by operational (40 occurrences), organizational (8 occurrences),
managerial (9 occurrences), and strategic benefits (4 occurrences). Breaking
down the potential benefits of big data analytics, many cases reveal that big
data analytics techniques such as data mining [59,66], visual analytics
[60,62,67], and predictive analytics [63,68] being used to analyze patient
data can significantly improve clinical workflow (17 occurrences), monitor
quality, and reduce costs (11 occurrences).

Moreover, Table 5 shows that big data analytics has the potential to
reduce system redundancy (10 occurrences) and transfer data quickly and
securely at different locations (7 occurrences). For example, to aggregate
data from approximately 50,000 patients, 6700 appointments, and
medical staffs within the hospitals for building the predictive model to
tackle the problem of overbooking appointments, Mental Health Center of
Denver used a mining table with 3474 attributes to classify the character-
istics of appointment for each patient [69]. This mining table allows to
record patient and appointment information accurately and avoid data
duplication in turn to increase prediction quality.

4.2. Discussion of pair-wise connections

We further evaluate the pair-wise connections among the elements
that provide us a deeper understanding of (1) how big data analytics
capabilities can be generated from big data analytics components (see
Table 6), (2) how IT-enabled transformation practices can be triggered
by big data analytics capabilities (see Table 7), and (3) how big data

Table 5
Breaking down the potential benefits of big data analytics.

Elements of potential benefits Subelements Number of occurrences

IT infrastructure benefits Reduce healthcare system redundancy 10 44
Quickly and securely transfer data between healthcare IT systems at different hospitals 7

Reduce maintenance costs regarding data storage 6
Avoid unnecessary IT costs 6

Better use of healthcare systems 5
Conduct basic analytic processing without changes in code 5

Gain better IT effectiveness compared to the traditional database environments 3
Process standardization among various healthcare IT systems 2

Operational benefits Improve workflow efficiency 17 40
Monitor quality and improve costs and outcomes 11

Reduce the time for information extraction from research studies on large databases 8
Explore new insights for improving care productivity 4

Organizational benefits Improve cross-functional communication and collaboration 5 8
Solve multidisciplinary problems quickly than traditional manual methods 2

Organizational learning from various clinical reports 1
Managerial benefits Gain insights quickly about changing healthcare trends in the market 6 9

Provide members of the board and heads of department with sound information about decision-making and planning 3
Strategic benefits Building competitive advantage on cost and health service 3 4

Provide comprehensive view of care delivery for innovation 1
Total 105

Table 6
Number of pair-wise connections linking big data analytics components with big data
analytics capabilities.

Big data analytics
capabilities

Big data analytics resources

Data
aggregation

Data
analysis

Data
interpretation

Total

Traceability 13 3 0 16
Analytical 2 47 0 49
Decision support 1 6 19 26
Predictive 0 5 9 14
Total 16 61 28 105

Table 7
Number of pair-wise connections linking big data analytics capabilities with big data
analytics-enabled transformation practice.

Big data-enabled
transformation
practices

Big data capabilities

Traceability Analytical Decision
support

Predictive Total

Evidence-based
medicine

1 27 16 2 46

Meaningful use of
EHR

15 4 0 0 19

Multidisciplinary 0 1 6 0 7
Clinical resource

integration
0 5 0 5 10

Network
collaboration

0 4 0 2 6

Network knowledge
creation

0 5 4 3 12

Personalized care 0 3 0 2 5
Total 16 49 26 14 105
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analytics capabilities contribute to the business value (see Table 8).

4.2.1. Linking big data analytics components with their capabilities
Table 6 provides a technological understanding of how big data

analytics capabilities can be created from different big data analytics
components. Breaking down theses connections, most obviously, the
results show that data analysis component can generate analytical
capability (47), while data interpretation component can trigger
decision support capability (19).

4.2.2. Linking big data analytics capabilities with transformation practices
Table 7 shows that analytical capability mainly improves evidence-

based medicine (27 connections), which in turn can lead to better
clinical resource integration (5 connections) and network knowledge
creation (5 connections). The second highest count of connections is the
link between decision support capability and evidence-based medicine
practice, which has 16 links. Our analysis also indicates that increased
traceability (15 links) and analytical capability (4 links) play vital roles
in improving the meaningful use of EHR practices.

Overall, of the capabilities that are less frequently linked to
revolutionary transformation-level practices, 9.52% are connected to
business process redesign (i.e., clinical resource integration), 17.14%
with business network redesign (i.e., network collaboration and net-
work knowledge creation), and 4.76% to business scope redefinition
(personalized care). This result agreed with several previous studies
(e.g., [4,22]) that the value of big data analytics to healthcare-related
operations and services is currently limited because the challenges for
health data collection and processing have not been addressed. More
advanced applications and maturing analytical processes are needed for
big data analytics solutions in healthcare to achieve their full potential.

4.2.3. Linking big data capabilities with potential benefits
Our results reveal that different big data capabilities and various

combinations bring different benefits (see Table 8). One particular big
data capability, analytical capability, is associated with all five
potential benefits with a total of 49 links, which consist of IT
infrastructure benefits (19 links), operational benefits (15 links),
managerial benefits (7 links), organizational benefits (5 links), and
strategic benefits (3 links). Decision support capability has the second
highest count of links (26 links) but limited to only three benefits:
organizational benefits (1 link), IT infrastructure benefits (6 links), and
operational benefits (19 links). Traceability capability could potentially
bring both IT infrastructure benefits (13 links) and operational benefits
(3 links). Finally, predictive capability could potentially lead to IT
infrastructure benefits (6 connections) and operational benefits (3
connections).

Overall, 80% of chains show that IT infrastructure and operational
benefits can be acquired using big data analytics. However, our results
also demonstrate that big data analytics have a limited ability to help
healthcare organizations gain organizational, strategic, or managerial
benefits as of now.

4.3. Discussion of path-to-value chains

Three path-to-value chains were observed most frequently, as
shown in Fig. 2. The first of these chains leads from analytical capability
driven by data analysis components through evidence-based medicine
to IT infrastructure benefits (19 occurrences). The second, which starts
with decision support capability trigged by data interpretation compo-
nent and moves through evidence-based medicine practice to opera-
tional benefits, is equally significant (16 occurrences). The final chain,
which goes from traceability enabled by data aggregation component,
through meaningful use of EHR and IT infrastructure benefits, is slightly
less common (13 occurrences). We did not present any process link
from predictive capability because the frequency count is below the cut-
off point (10 occurrences) we chose.

4.3.1. First path-to-value chain
Evidence-based medicine practices are increasingly applied as an

important way to ensure high-quality care in healthcare settings [70].
Big data analytics provide solutions to fill the growing need of
healthcare managers to make better use of real-time data, unify all
patient medical records, and capture data from medical devices, thus
supporting evidence-based medicine. It is now possible to identify new
insights from massive healthcare record databases with ease and from
large-scale medical literature databases, which helps doctors and
medical staffs make more accurate diagnoses and better treatment
decisions. For example, Optum Labs, an open collaborative research
and innovation center, has emphasized that analyzing findings from
previous clinical studies could be used to translate new evidences into
routine clinical processes and thus drive successful evidence-based
medicine [71].

In addition, analyzing a variety of patient data allows physicians to
match treatments with evidence-supported outcomes that offer more
reliable care to patients [53,59]. A recent study by Raghupathi and
Raghupathi [4] has reported that the Rizzoli Orthopedic Institute in
Bologna, Italy, analyses patient genomic data and case histories to
determine hereditary diseases risks and provide information on effec-
tive treatments for hereditary diseases. Their analytical capability is
used to develop more evidence-based surgery protocols for patients
with genetic disease, resulting in 60% of reduction in imaging requests.
Likewise, by using data mining approach, Dutch long-term care
institution classifies all incidents into predefined categories and finds
the causes of occurred incidents. Such analytical capability helps Dutch
long-term care institution discover the facts to improve their patient
safety [53]. We thus conclude that analytical capability can improve
the efficiency of evidence-based medicine practices, which in turn
facilitates IT infrastructure benefits.

4.3.2. Second path-to-value chain
Big data analytics has the potential to promote unity in evidence-

based medical practices, particularly where decision support capability
is implemented. The diverse outputs from big data analytics systems in
the healthcare context, including clinical information displayed in
visual metrics/dashboards, real-time monitoring of information (e.g.,
alerts and proactive notifications), real-time data navigation, and
operational KPIs accelerate healthcare organizations’ ability to make
sound decisions in daily clinical operations [72]. These outputs as an
important source of evidence are generally gathered from multiple
sources such as clinical healthcare systems, smartphones, and personal
medical devices and sent to relevant specialists in the teams or made
available in the form of real-time dashboards to monitor patient health
and prevent medical accidents. With these outputs to support decision
support capability, our case hospitals (e.g., Mental Health Center of
Denver and Kaiser Permanente Northern California) not only recognize
feasible opportunities for quality improvement [58,69,73] but also help
their analysts to recognize emerging healthcare issues such as medical
errors, various patient safety issues, and appropriate medication use

Table 8
Number of pair-wise connections linking big data capabilities and potential benefits.

Potential benefits of
big data

Big data capabilities

Traceability Analytical Decision
support

Predictive Total

IT infrastructure
benefits

13 19 6 6 44

Operational benefits 3 15 19 3 40
Organizational

benefits
0 5 1 2 8

Managerial benefits 0 7 0 2 9
Strategic benefits 0 3 0 1 4
Total 16 49 26 14 105
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[72,74]. Thus, decision support capability can improve the quality of
evidence-based medicine practices and consequently lead to opera-
tional benefits.

4.3.3. Third path-to-value chain
The use of EHR has the potential to enhance healthcare service

efficiency and effectiveness, but this does not mean that simply
adopting the system will produce those benefits. In the United States,
the HITECH Act, which is part of the Recovery and Reinvestment Act of
2009, introduced a meaningful use guide for EHR, emphasizing that the
main objective is to create digital medical records, including the entry
of basic data, and optimize the utilization of EHR [50]. To achieve
meaningful use and avoid penalties, healthcare providers must follow a
set of practices with core quality measures that serve as a guideline for
effectively using EHR systems. This involves implementing two key
practices: (1) facilitating basic EHR adoption and clinical data gather-
ing and (2) strengthening care coordination and exchange of patient
information [75].

From our results, big data analytics indeed has the potential to help
healthcare organizations achieve the meaningful use of EHR practices.
We found that adopting big data analytics in a healthcare organization
makes it possible to maintain patient EHR data by tracking patient
demographics and health status, doctor prescriptions, and medications
and diagnoses automatically [1,72,74,76]. Ideally, with traceability
triggered by data aggregation tools such as data warehouse and ETL
tools, healthcare organization can capture all patient data with ease
from separate repositories ranging from single IT components, clinical
offices (e.g., physicians, pharmacies, or research laboratories) to large
state-level or national-level hospital networks. This permits data
analysts to aggregate every patient’s health records and transform them
into meaningful information and then present such information to
eligible healthcare providers. By increasing data quality and coordina-

tion efficiency of EHRs, IT costs (e.g., reducing the load on working
memory) and redundancies are reduced [72]. One of our cases,
Brigham and Women’s Hospital (BWH), is a good example of high
efficacy of in-depth traceability in longitudinal healthcare data. BWH
integrates data mining algorithms with proper data rules into legacy IT
systems to automatically monitor drug safety through tracking warning
signals triggered by alarm systems. They use the traced data to
implement drug–drug and drug–allergy interactions checks for EHR
reporting and thus are able to identify drug-related risks at an earlier
stage [1]. Such traceability boosts EHR being used in a meaningful way,
which in turn facilitates IT infrastructure benefits.

5. Theoretical and managerial implications

5.1. Theoretical implications

This study has several theoretical implications for big data analytics
research. First, instead of simply focusing on the impact of big data
analytics on business value, we have developed the big data-enabled
transformation model based on PBV to further understand how big data
analytics impacts the transformation practices in healthcare organiza-
tions. We believe that this is among the first attempts to systematically
capture the causal relationships among big data analytics capabilities,
IT-enabled transformation practices, benefit dimensions, and business
value. Second, our study reveals the essential elements, connections,
and path-to-value chains for an understanding of organization trans-
formation through big data analytics. To the best of our knowledge, this
is the first study that took such unique approach integrating prominent
IS theories and applying the new perspectives to a current IT innovation
to show the “causal chains” of IS business value. With this approach, we
have provided empirical evidence that big data analytics has a
significant impact on improving meaningful use of EHR and evidence-

Fig. 2. Results of the big data analytics-enabled transformation model.
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based medicine practices.
Finally, PBV promotes a research approach that “examines publicly

known, imitable activities, or practices amenable to transfer across
firms.” ([8]; p.1249). Healthcare is a fertile domain for this type of
research because there are many “publicly known” and “imitable
activities.” Therefore, we chose the healthcare industry to further test
and validate the applicability of our model. As PBV offers a new and
different perspective to complement the extant strategic views such as
resource-based theory [8], we set out to explore the potential explana-
tions for performance variation from common practices.

5.2. Practical implications

Our findings offer practical insights and guidance for healthcare
practitioners who are engaged in implementing big data analytics. First
of all, decision support is one of the crucial big data analytics
capabilities due to its ability to create meaningful clinical reports.
The key to use reports effectively is to equip managers and employees
with relevant professional competencies, such as the skills of making an
appropriate interpretation of the results and critical thinking.
According to American Management Association [77], 64% of organi-
zations in the United States fail to meet all of their expected analyzing
data skills needed in the workplace. In this regard, incorrect interpreta-
tion of the reports generated could lead to serious errors of judgment
and questionable decisions. Thus, it is important that healthcare
organizations provide analytical training in areas such as basic statis-
tics, data mining, and business intelligence to those employees who will
play a critical support role in the new information-rich work environ-
ment. Mentoring, cross-functional team-based training, and self-study
are also beneficial training approaches to help employees develop the
big data analytical skills they need.

Second, the third path-to-value chain that goes from traceability
through meaningful use of EHR to IT infrastructure benefits is slightly
less common than the first two chains. Traceability is the ability to track
output data from all the system’s IT components throughout the
organization’s service units and thus could help in keeping real-time
updates. To comply with the Patient Protection and Affordable Care Act
of 2010, healthcare organizations need to keep detailed and updated
data. Our results show that this capability is still underutilized maybe
because healthcare managers have not recognized the potential benefits
or are cost sensitive. Our result demonstrates the elements involved in
this path-to-value, which managers could try to develop and to include
to their repertoire.

Finally, although the frequency counts of the path-to-value chain
the predictive capability leads was below our cut-off criteria, it still
provides some practical values because it can help generate new ideas.
New idea generation not only is necessary for organizational innovation
but also can lead to changes in business operations that will increase
productivity and build competitive advantages. This could be achieved
through the use of powerful big data predictive analytics tools. These
tools can provide detailed reporting and identify market trends that
allow companies to accelerate new business ideas and generate creative
thinking. For example, one of our cases shows that predictive analytics
supports Beth Israel Deaconess Medical Center’s home healthcare by
predicting patient illness to quickly deploy nurses to where the patient
suffers a health emergency. This reduced expensive emergency depart-
ment visits. It also increased collaborating with local healthcare
providers for care coordination [76].

6. Conclusion

Notwithstanding the above-mentioned contributions and implica-

tions, our study is subject to the limitations. One challenge in the
healthcare industry is that their IT adoption usually lags behind that of
other industries. Case organizations studied in this paper are “leaders”
in their own rights. They are either top-ranked research hospitals or
associated with top medical schools with resources or highly profitable
entities. We have not found “small” healthcare organizations that could
afford big data analytics technologies to enjoy the benefits we presented
in our findings.

Our study reveals the essential elements, links, and path-to-value
chains for an understanding of big data-enabled transformation. One
limitation of this study is the data source. Further and better validation
of the BDET model could be performed through collecting and
analyzing primary data. Given the growing number of healthcare
organizations adopting big data technologies, the sample frame for
collecting primary data is larger. Examining the BDET model and our
findings with quantitative analysis method could shed different lights.
With quantitative method, correlations, effect sizes, and relationships
are quantified. However, to perform a quantitative study, a valid scale
for big data analytics capabilities is needed.

In addition to requiring empirical analysis of big data-enabled
transformation, our study also exposes the needs for more scientific
and quantitative studies, focusing on some of the big data capability
elements we identified. This especially applies to the two most
frequently cited big data analytics capabilities, namely analytical
capability and decision support capability in our cases. With a growing
amount of diverse and unstructured data, there is an urgent need for
advanced analytic techniques, such as deep machine learning algo-
rithms that instruct computers to detect items of interest in large
quantities of unstructured and binary data and to deduce relationships
without needing specific models or programming instructions. We thus
expect future scientific studies that develop efficient unstructured data
analytical algorithms and applications as primary technological devel-
opments.

Future research may also consider using in-depth single or multiple
cases studies to explain how and why big data capabilities help improve
specific IT-enabled transformation practices. This particularly applies to
the most frequent path-to-value chain, which leads from analytical
capability through evidence-based medicine and IT infrastructure
benefits to profitability. Such case studies allow academics and practi-
tioners to a more granular understanding of big data management best
practices in real world.

Different industries have different needs or goals of using big data
technology solutions. We targeted healthcare for this study. Hence, the
results are industry-specific. Future research can apply the BDET model
to other industries. Different big data capabilities, practices, benefits,
and outcomes might surface. In light of these future opportunities, we
believe that the big data research stream with a focus on strategic view
has a great potential to help balance the number of studies of big data
from technological and managerial perspectives.

In conclusion, in this study, we have not only focused on identifying
the big data analytics capabilities but also developed a BDET model
based on Bromiley and Rau’s [8] PBV. Although PBV purposely defines
practice in an ambiguous manner to accommodate the idiosyncratic
nature of such construct, our study extends PBV by considering the IT-
enabled transformation practice in healthcare as a practice variable and
big data analytics capabilities as an explanatory variable. As a result,
this study may provide a good starting point in opening the “black box”
of how big data analytics capabilities impact transformation practices
in healthcare.
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Appendix A : A list of big data cases

No. Case Name Country Sources

1 Children’s Hospital of Philadelphia United States [60,72,74]
2 Brigham and Women’s hospital United States [1]
3 Mental Health Center of Denver United States [69]
4 North Texas Hospitals System United States [68]
5 Beth Israel Deaconess Medical Center United States [76]
6 Private Health Insurer Australia [63,79]
7 Neonatal intensive care units in The Hospital for Sick Children Canada [80]
8 Chicago Department of Public Health United States [81]
9 Case Western University Hospital United States [82]
10 Centers for Medicare and Medicaid Services (CMS) United States [64]
11 Cardinal Health United States [83]
12 University of Utah Health Sciences Center United States [84]
13 United Health Services Hospitals United States [85]
14 OCHIN Community Health Information Network United States [86]
15 Dutch long-term care institution Netherlands [53]
16 Guysborough Antigonish Strait Health Authority Canada [87]
17 UCLA Medical Center United States [73]
18 Department of Health Western Australia Australia [61]
19 Optum Labs United States [71]
20 Children’s Healthcare of Atlanta United States [88]
21 Duke University Health System United States [67]
22 Newark Beth Israel Medical Center United States [59]
23 Jinhua Municipal Central Hospital China [66,89]
24 Cardiac surgery Centre in New Delhi India [90]
25 Veterans Health Administration United States [91,92]
26 Kaiser Permanente Northern California United States [1,58]
27 NorthShore University Health System United States [93]
28 MedStar Health United States [62]

Appendix B : Defining the initial elements of connecting layers

Elements Descriptions Sources

Traceability Integrate and track patient data from all the IT components throughout the various healthcare service units [94,95]
Analytical capability Enable users to process clinical data with an immense volume (from terabytes to exabytes), variety (from text

to graph), and velocity (from batch to streaming) by using descriptive analytics techniques
[20,24]

Decision support
capability

Produce outputs regarding patients, care process, and service to guide diagnostic and treatment decisions [96]

Predictive capability Explore data and identify useful correlations, patterns, and trends and extrapolate them to forecast what is
likely to occur in the future

[25,97],

Evidence-based
medicine

Integrate individual clinical expertise with the best available external clinical evidence from systematic
research

[70]

Meaningful use of
EHR

The practices that realize the true potential of EHR to improve the safety, quality, and efficiency of care [50,98],

Multidisciplinary The practices draw from multiple specialties with coordinated, interrelated behaviors [99]
Clinical resource

integration
The practices that patient care services are coordinated across the various functions, activities, and operating

units of a system
[100]

Network
collaboration

The practices that concentrate on the collaboration between care providers and other stakeholders in terms of
dedicated care management resources, data reporting, and quality measurement

[101]

Network knowledge
creation

The practices that incorporate new explicit and tacit knowledge generated from healthcare networks into the
clinical routines

[102,103]

Personalized care The practices that seek to identify the optimal treatment for each individual patient to stratify patients for
specific therapies and minimize adverse effects by utilizing clinical information

[104]
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